COLEGIO PSICOPEDAGÓGICO EL ARTE DEL SABER GUÍA No. 8

DOCENTE : ERIKA PEREZ	ÁREA: CIENCIAS NATURALES	ASIGNATURA: QUÍMICA Y BIOLOGÍA.
GRADO: DÉCIMO	PERIODO: SEGUNDO	AÑO : 2020

TEMA: RELACIONES PONDERALES.

Relaciones Mol-Mol

1. Calcular la **cantidad en moles** que se obtienen de sosa cáustica (hidróxido de sodio, NaOH) cuando reaccionan totalmente 0.45 **mol** de cal apagada (hidróxido de calcio, Ca(OH)2, con carbonato de sodio (Na2CO3):

Ecuación:

Na₂CO₃ + Ca(OH)₂
$$\rightarrow$$
 2NaOH + CaCO₃
1 mol 2 moles

Se plantea el problema:

0.45 moles _____
$$x$$
1 ____ 2 moles mol
$$x = 0.45 \text{ mol} \times 2 \text{ moles}$$
1 mol
$$x = 0.9 \text{ mol}$$

Por tanto, el resultado es que se obtienen 0.9 mol de NaOH.

Relaciones Mol-Masa

1. ¿Cuántos **gramos** de nitruro de magnesio (Mg3N2) se obtienen cuando reaccionan 3.2 **moles** de amoniaco (NH3) con el suficiente magnesio (Mg)?

Ecuación:

$$2NH3 + 3Mg \rightarrow Mg_3N_2 + 3H_2$$
2 moles 100.9 g

Se plantea el problema:

3.2 _____ x g moles
2 _____ 100.9 g moles
$$x=3.2 \text{ moles} \times 100.9 \text{ g}$$
2 moles

$$x = 161.44 g$$

Se obtienen 161.44 g de Mg3N2.

Relaciones Masa-Mol

1. ¿Cuántas **moles** de ácido clorhídrico (HCl) en reacción total con dióxido de manganeso (MnO2) se necesitan para obtener **10 gramos** de cloruro de manganeso (MnCl2)?

$$4HCI + MnO2 \rightarrow MnCI2 + CI2 + 2H2O$$

4 moles 125.9 g

Se plantea el problema:

$$x \text{ moles}$$
 ______ 10 g
 4 moles ______ 125.9 g
 $x = 4 \text{ moles} \times 10 \text{ g}$
 $125,9 \text{ g}$
 $x = 0.31 \text{ mol}$

Se necesitan 0.31 mol de HCl.

Relaciones Masa-Masa

1. Se requiere neutralizar 50 g de ácido sulfúrico (H2SO4). ¿Cuántos gramos de hidróxido de sodio (NaOH) se deben emplear?

Ecuación:

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

98 g 80 g

Se plantea el problema:

Se necesitan 40.8 g de NaOH.

TAREA: FECHA LÍMITE DE ENVÍO: JUEVES 4 DE JUNIO.

1. Según la ecuación

¿cuántos gramos de hidróxido de calcio, Ca(OH)2, se obtienen al reaccionar 500 g de óxido de calcio (CaO)?

2. En la siguiente ecuación

¿cuántos gramos de magnesio, Mg, reaccionando totalmente con sulfato de cobre II son necesarios para obtener 2.5 moles de cobre, Cu?

3. Se necesitan 100 g de hierro (Fe). ¿Cuántas moles de óxido de hierro III (Fe2O3) deben reducirse con monóxido de carbono (CO)?

Ecuación:

4. ¿Cuántos gramos de dióxido de carbono (CO2) se producen al reaccionar 50 g de carbonato de sodio (Na2CO3) con suficiente ácido clorhídrico (HCI)?

Ecuación: